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The electron transmission between monolayer and bilayer graphene is theoretically studied for zigzag and
armchair boundaries within an effective-mass scheme. Due to the presence of an evanescent wave in the
bilayer graphene, traveling modes are well connected to each other. The transmission through the boundary is
strongly dependent on the incident angle and the dependence is opposite between the K and K� points, leading
to valley polarization of transmitted wave.
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I. INTRODUCTION

Graphene, the latest addition to the family of two-
dimensional materials, is distinguished by its unusual elec-
tron dynamics governed by the Dirac equation.1–4 Wave
functions are characterized by spinor whose orientation is
inextricably linked to the direction of the electron momen-
tum in a different manner between monolayer and bilayer
graphene.5–7 Recently monolayer and bilayer graphene were
fabricated using the method of mechanical exfoliation6,8 and
epitaxially.9,10 The purpose of this paper is to study the elec-
tron transmission through boundary between monolayer and
bilayer graphene and show that strong valley polarization is
induced in the transmission probability through the
boundary.

Transport properties in a monolayer graphene are quite
intriguing, and the conductivity with/without a magnetic
field including the Hall effect,11,12 quantum corrections to the
conductivity,13 and the dynamical transport14 were theoreti-
cally investigated prior to experiments. The magnetotrans-
port was measured including the integer quantum-Hall effect,
demonstrating the validity of the neutrino description of the
electronic states.15,16 Bilayer graphene composed of a pair of
graphene layers6,9,17,18 has a zero-gap structure with qua-
dratic dispersion different from a linear dispersion in a
monolayer graphene.7,19–25

In graphenes, states associated with K and K� points or
valleys are degenerate. A possible lifting of the degeneracy
has been experimentally observed in high magnetic fields26

and there have been various suggestions on mechanisms
leading to valley splitting and/or polarization.27–33 A way to
detect valley polarization is proposed with the use of a su-
perconducting contact.34

In a graphene sheet with a finite width, localized edge
states are formed, when the boundary is in a certain specific
direction.35,36 Edge states of monolayer graphene ribbons
have been a subject of extensive theoretical study.37–54 The
electron transport along the boundary has been calculated
and characterized by odd number of channels in each
valley.41 When the number of occupied subbands is odd, a
perfectly conducting channel transmitting through the ribbon
is present55–59 as in metallic carbon nanotubes.5,60,61 A way to
make valley filtering has been proposed with the explicit use
of the fact that only a single right- and left-going wave can

carry current at each of the K and K� points.62 Recently, edge
states in bilayer graphene were studied63,64 and conductance
through quantum structures consisting of monolayer and bi-
layer graphene were calculated.65,66

In this paper we study boundary conditions between
monolayer and bilayer graphene and calculate the transmis-
sion probability as a function of the electron concentration
and the incident angle of injected wave. In Sec. II the treat-
ment of electronic states in a k ·p scheme is briefly reviewed
and boundary conditions are derived in Sec. III. Valley po-
larization is shown in Sec. IV under the condition that the
electron density in both monolayer and bilayer regions is the
same. Numerical results are presented in Sec. V and discus-
sion and short summary are given in Sec. VI. Analytic results
in the vicinity of the Dirac point for zigzag and armchair
boundaries are discussed in Appendices A and B, respec-
tively, and the number of edges states localized at boundaries
is discussed in Appendix C.

II. MONOLAYER AND BILAYER GRAPHENE

A. Monolayer graphene

Figure 1 shows the structure of graphene, two primitive
translation vectors a and b, and three vectors ��l �l=1,2 ,3�
connecting nearest-neighbor atoms. A unit cell contains two
carbon atoms denoted by A and B. The origin of the coordi-
nates is chosen at a B site, i.e., a B site is given by RB
=naa+nbb and an A site is RA=naa+nbb+�� with na and nb
being integers and �� ���1= �a+2b� /3. In the coordinate sys-
tem �x� ,y�� fixed on the graphene, we have a=a�1,0�, b
=a�1 /2,�3 /2�, and �� =a�0,1 /�3�, where a=0.246 nm is the
lattice constant. In the following we start with a tight-binding
model with a nearest-neighbor hopping integral −�0. We
consider the coordinates �x ,y� rotated around the origin by �
such that the y axis is always along the boundary of the
bilayer graphene.

In a monolayer graphene, two bands having approxi-
mately a linear dispersion cross at corner K and K� points of
the first Brillouin zone. The wave vectors of the K and K�
points are given by K= �2� /a��1 /3,1 /�3� and K�
= �2� /a��2 /3,0�, respectively. In a tight-binding model, the
wave function is written as
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��r� = �
R=RA

�A�R���r − R� + �
R=RB

�B�R���r − R� , �1�

where ��r� denotes a pz orbital. The amplitude at atomic
sites R=RA or RB satisfies

��A�R� = − �0 �
l=1,2,3

�B�R − ��l� ,

��B�R� = − �0 �
l=1,2,3

�A�R + ��l� , �2�

where the overlap integral has been neglected for simplicity.
For states in the vicinity of the Fermi level �=0 of the

graphene, the amplitudes are written as

�A�R� = eiK·RFA
K�R� + ei�eiK�·RFA

K��R� ,

�B�R� = − 	ei�eiK·RFB
K�R� + eiK�·RFB

K��R� , �3�

in terms of envelope functions FA
K, FB

K, FA
K�, and FB

K�,3 where
� is the angle between the x and x� axes as mentioned before
and 	=e2�i/3. The envelope functions are assumed to be
slowly varying in the scale of the lattice constant.

For the K point, the envelope functions satisfy the
Schrödinger equation,3

H0F�r� = �F�r� �4�

with

H0 = �� 0 k̂−

k̂+ 0
� , �5�

FK�r� = �FA
K�r�

FB
K�r�

� , �6�

where �=�3a�0 /2 is the band parameter, k̂
= k̂x
 ik̂y, and

k̂= �k̂x , k̂y�=−i�� is a wave-vector operator. For states with

energy �=s�k with s= 
1 and k=�kx
2+ky

2, the wave function
is given by

FK�r� = �sk−/k
1

�eik·r, �7�

apart from a normalization constant. For the K� point the

Schrödinger equation is obtained by replacing k̂y with −k̂y
and therefore the wave function by replacing ky with −ky.

B. Bilayer graphene

We consider a bilayer graphene, which is arranged in the
AB �Bernal� stacking, as shown in Fig. 1. A bottom layer is
denoted as 1 and a top layer denoted as 2. The unit cell
contains two carbon atoms denoted by A1 and b1 in layer 1,
and a2 and B2 in layer 2. For the interlayer coupling, we
include coupling �1 between vertically neighboring atoms b1
and a2. As a result, the states associated with b1 and a2 are
pushed away from the Fermi level, which is the reason that
they are denoted by lower-case characters.

Similar equations of motion can be written down for am-
plitudes at atomic sites with the use of nearest-neighbor in-
plane hopping integral −�0 and interlayer hopping integral
�1. In terms of slowly varying envelope functions, the am-
plitudes are written as

�A1�R� = eiK·RFA1
K �R� + ei�eiK�·RFA1

K��R� ,

�b1�R� = − 	ei�eiK·RFb1
K �R� + eiK�·RFb1

K��R� ,

�a2�R� = − 	ei�eiK·RFa2
K �R� + eiK�·RFa2

K��R� ,

�B2�R� = 	−1e2i�eiK·RFB2
K �R� + e−i�eiK�·RFB2

K��R� . �8�

In the vicinity of the K point, for example, the envelope
functions satisfy the Schrödinger equation,3,19,23

H0FK�r� = �FK�r� , �9�

with

H0 =

A1 b1 a2 B2

�
0 �k̂− 0 0

�k̂+ 0 �1 0

0 �1 0 �k̂−

0 0 �k̂+ 0
	 , �10�
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FIG. 1. �Color online� Atomic structure near boundaries be-
tween monolayer and bilayer graphene. �a� Zigzag boundaries ZZ1
��=−� /6� and �b� ZZ2 ��=� /6�. �c� Armchair boundaries AC1
��=0� and �d� AC2 ��=� /3�. Red �thick� and green �thin� lines
represent the top layer with a2 and B2 sites, and bottom layer with
A1 and b1 sites, respectively.
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FK�r� =�
FA1

K �r�
Fb1

K �r�
Fa2

K �r�
FB2

K �r�
	 . �11�

We have two conduction bands �s=+1� and valence bands
�s=−1�,

�s,j�k� = s


1

2
�1 +�1

4
�1

2 + ��k�2� �j = 1,2� , �12�

where the lower and upper signs correspond to j=1 and 2,
respectively. In the energy range −�1���+�1, in particular,
we have a traveling mode corresponding to �s,1�k�,

FK�r� =�
− s

kx − iky

kx + iky

−
��kx − iky�

�1 + ���

s
��kx − iky�

�1 + ���
1

	eik·r, �13�

apart from a normalization constant. We have also evanes-
cent modes decaying or growing exponentially. The wave
function of the decaying mode in the positive x direction, for
example, is given by

GK�r� =�
s
�x − ky

�x + ky

− i
���x − ky�

�1 − ���

− is
���x − ky�

�1 − ���
1

	e−�xx+ikyy �14�

with

�x =������1 − ����
�2 + ky

2. �15�

For the traveling mode, the four-component vector of the
wave function for ky �0 is complex conjugate of that for
ky 0. For the evanescent mode, however, the absolute value
of the amplitude is quite asymmetric between positive and
negative ky. This asymmetry is the origin of valley polariza-
tion of transmitted wave, as will be shown below. Further,
the b1 and a2 components of the evanescent mode diverge at
���=�1, showing that the B2 component vanishes when being
properly renormalized. This is related to the perfect reflec-
tion occurring at ���=�1 for some boundaries as will be
shown below.

In the vicinity of �=0, i.e., �����1, the Hamiltonian can
be reduced to a �2,2� form with basis set �A1 ,B2� as

H0 = −
�2

�1
� 0 k̂−

2

k̂+
2 0

� , �16�

where functions Fa2 and Fb1 have been eliminated with

Fb1
K �r�  −

�

�1
k̂−FB2

K �r� ,

Fa2
K �r�  −

�

�1
k̂+FA1

K �r� . �17�

Corresponding energy eigenvalues are

�s�k� = s
�2

�1
k2. �18�

This effective Hamiltonian describes the second-order pro-
cess between A1 and B2 via a2-b1 dimers and reproduces the
low-energy part of the dispersion quite well.7,19,20,23 For the
evanescent mode given by Eq. �14� with Eq. �15�, we can
neglect ��� in comparison with �1 in these equations.

For the K� point, the Hamiltonian is obtained by the re-

placements k̂y→−k̂y. Therefore, the wave functions are ob-
tained by changing ky into −ky.

III. BOUNDARY CONDITION

Let us consider a boundary between monolayer and bi-
layer graphene as illustrated in Figs. 1�a�–1�d�. The boundary
is straight in the y direction specified by angle �. We have
zigzag boundaries in both �a� �=−� /6 �ZZ1� and �b� �
=� /6 �ZZ2�, and armchair boundaries in both �c� �=0
�AC1� and �d� �=� /3 �AC2�. For these boundaries, the
wave functions of both sides can be matched only by those in
the vicinity of the K and K� points, given by Eqs. �3� and �8�.
In more general cases, boundary conditions involve evanes-
cent states away from the K and K� points, other than those
described by Eqs. �3� and �8�, and more elaborate treatment
is required to derive conditions for the envelope
functions.67–70

A. Zigzag boundary: ZZ1

First, we consider zigzag boundary ZZ1 with �=−� /6, as
shown in Fig. 1�a�. For A sites on line x=xA�−a / �2�3�, we
have condition,

�A�RA� = �A1�RA�, RA = n�a + b� + ��2, �19�

where �A1�RA� is the wave function extrapolated to RA from
the bilayer region. For b1 sites on line x=xb1�0, we have

�B�Rb1� = �b1�Rb1�, Rb1 = n�a + b� , �20�

where �B�Rb1� is the wave function extrapolated to Rb1 from
the monolayer region. Because of the absence of B2 sites on
line x=xB2�−a /�3, we have

�B2�RB2� = 0, RB2 = n�a + b� − ��3. �21�

The phase of Bloch functions eiK·RA at the K point and
eiK�·RA at the K� point appearing in Eq. �19� given by Eq. �3�
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rapidly oscillates as a function of n with period of 3 in a
different manner. Therefore, condition �19� is satisfied if and
only if the envelope function of each valley is the same along
line x=xA, i.e., FA1

v �xA ,y�=FA
v�xA ,y� for v=K and K�. The

same is applicable to Eqs. �20� and �21�, giving Fb1
v �xb1 ,y�

=FB
v�xb1 ,y� and FB2

v �xB2 ,y�=0 for v=K and K�. Because the
envelope functions satisfy first-order differential Eq. �10�,
the boundary conditions are fully specified only by their am-
plitudes at the boundary. Therefore, the slight deviation of xA
and xB2 from x=0 can safely be neglected and the boundary
conditions between envelope functions FA1

v �r� ,Fb1
v �r� and

FB2
v �r� in bilayer graphene and FA

v�r� and FB
v�r� in monolayer

graphene are written as

FA1
v �0,y� = FA

v�0,y� ,

Fb1
v �0,y� = FB

v�0,y� ,

FB2
v �0,y� = 0, �22�

for v=K and K�.
The boundary conditions do not cause mixing between the

K and K� points, leading to the absence of intervalley trans-
mission through the boundary. The transmission of electron
wave through the boundary can explicitly be calculated by
considering right- and left-going traveling modes, Eq. �7�, in
the monolayer and traveling modes, Eq. �13�, and an evanes-
cent mode, Eq. �14�, decaying in the positive x direction in
the bilayer. Some of the results are presented in Sec. V.

In order to understand how traveling modes of both sides
are connected with each other, we consider the energy region
close to the Dirac point �����1 in the K valley. Envelope
functions in bilayer graphene are composed of traveling

waves, to be described by F̃K, and an evanescent wave GK.
The traveling modes in the bilayer side are mainly described

by two components F̃A1
K and F̃B2

K , and other components are
eliminated by using Eq. �17�. Because the wave vector in the
y direction perpendicular to the boundary is conserved, the
wave functions are written as FA

K�r�=FA
K�x�eikyy, etc. After

the evanescent mode given by Eq. �14� being eliminated, we
have following boundary conditions for traveling modes:

�FA
K�0�

FB
K�0� �  �1 − s

�x − ky

�x + ky

0 −
��k̂x − i�x�

�1

	��F̃A1
K �x�

F̃B2
K �x�

��
x=0

.

�23�

Details are discussed in Appendix A. The boundary condi-
tions for the K� point are obtained by replacing ky with −ky.
Note that the conditions now include the first derivative of
the wave functions in the bilayer side because they satisfy
second-order differential Eq. �16�.

In the limit ��� /�1→0, they are reduced to

FA
K�0�  F̃A1

K �0� − s
�x − ky

�x + ky
F̃B2

K �0� ,

FB
K�0�  0, �24�

The amplitude in the bilayer side is asymmetric with respect
to the sign of ky, i.e., the direction of the incident wave, and
the asymmetry is opposite between the K and K� points. This
means that for waves incident on the interface with oblique
angle, transmitted waves have valley polarization.

The second condition of Eq. �24�, together with Eq. �7�,
shows that the reflection coefficient becomes rKK−1 and
the transmission probability vanishes when an electron wave
is incident from the monolayer side. On the other hand, the
first equation of Eq. �24� shows that the amplitude of the
wave transmitted into the bilayer side is appreciable unless
FA

K�0�=0. These somewhat contradictory conclusions arise
from the fact the transmission probability is multiplied by the
velocity which is proportional to k in the bilayer side and
therefore is much smaller than in the monolayer side. Some
examples of the wave functions will be shown in Fig. 6.

B. Zigzag boundary: ZZ2

For the zigzag boundary ZZ2 ��=� /6� illustrated in Fig.
1�b�, boundary conditions become

�A�RA� = �A1�RA�, RA = nb + ��2,

�B�Rb1� = �b1�Rb1�, Rb1 = nb ,

�a2�Ra2� = 0, Ra2 = nb − a , �25�

giving conditions for the envelope functions

FA1
v �0,y� = FA

v�0,y� ,

Fb1
v �0,y� = FB

v�0,y� ,

Fa2
v �0,y� = 0. �26�

In the vicinity of the Dirac point �����1, boundary condi-
tions for traveling modes become

�FA
K�0�

FB
K�0� �  � 1 +

ik̂x − ky

�x + ky

0

s��k̂x + iky�
�1

−
��k̂x − iky�

�1

	��F̃A1
K �x�

F̃B2
K �x�

��
x=0

.

�27�

In the limit ��� /�1→0, they are reduced to

FA
K�0�  �1 +

ik̂x − ky

�x + ky
�F̃A1

K �x��x=0,

FB
K�0�  0. �28�

Essential features of the boundary conditions are the same as
in the case of ZZ1. This fact will be demonstrated by ap-
proximate but analytical results in Sec. IV and by numerical
results in Sec. V.
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C. Armchair boundary

Next, we consider armchair boundary AC1 ��=0� shown
in Fig. 1�c�. By a proper extrapolation of the wave functions,
we have boundary conditions

�A�RA� = �A1�RA�, RA = n�a + 2b� + ��2,

�A�RA1� = �A1�RA1�, RA1 = n�a + 2b� + ��1,

�B�RB� = �b1�RB�, RB = n�a + 2b� + b ,

�B�Rb1� = �b1�Rb1�, Rb1 = n�a + 2b� ,

�B2�RB2� = 0, RB2 = n�a + 2b� − ��3,

�a2�Ra2� = 0, Ra2 = n�a + 2b� + b , �29�

where RA and RB are on line x=x2�−a /2, RA1 and Rb1 are
on x=x1�0, and RB2 and Ra2 are on x=x2. Because K · �a
+2b�=K� · �a+2b�=0 �mod 2��, the Bloch functions remain
constant on lines x=x2 and x=x1. Thus, we have from the
first and second conditions of Eq. �29�,

FA1
K �r� + FA1

K��r� = FA
K�r� + FA

K��r��x=x2
,

	FA1
K �r� + FA1

K��r� = 	FA
K�r� + FA

K��r��x=x1
, �30�

respectively. Note that the slight deviation of x1 and x2 from
x=0 can safely be neglected from the same argument for
zigzag boundary. Because envelope functions are slowly
varying in the scale of a lattice constant, both conditions are
satisfied, if and only if they are the same within each valley.
Exactly the same argument is applicable to the third and
fourth conditions. For the fifth and sixth conditions of Eq.
�29�, we use ei�K�−K�·RB2 =	−1 and ei�K�−K�·Ra2 =	. Then, the
boundary conditions for the envelope functions are summa-
rized as

FA1
v �0,y� = FA

v�0,y� ,

Fb1
v �0,y� = FB

v�0,y� ,

Fa2
K �0,y� − Fa2

K��0,y� = 0,

FB2
K �0,y� + FB2

K��0,y� = 0. �31�

Armchair boundary AC2 of �=� /3 is illustrated in Fig.
1�d�. In a similar manner, the boundary conditions are ob-
tained as

FA1
v �0,y� = FA

v�0,y� ,

Fb1
v �0,y� = FB

v�0,y� ,

	Fa2
K �0,y� + Fa2

K��0,y� = 0,

	FB2
K �0,y� − FB2

K��0,y� = 0. �32�

These conditions are converted into those of AC1, Eq. �31�,
by changing the relative phases of the envelope functions for

the K and K� points. Therefore, there is no difference be-
tween transmission probabilities, etc., of AC1 and AC2
within the present k ·p scheme, although actual wave func-
tions �A�R�, etc., may be different.

Intervalley mixing occurs at the armchair boundary in
contrast to the zigzag boundaries. Effective boundary condi-
tions in the vicinity of the Dirac point, �����1, can be de-
rived in a manner similar to those for the zigzag boundaries
and the results are presented in Appendix B. There, we show
that the conditions are essentially similar except for the pres-
ence of small intervalley mixing. In fact, in the limit of k
→0, an injected wave is perfectly reflected within each val-
ley, i.e., rKK=−1 and rK�K=0 for wave incident in the K
valley and the transmission increases with energy as for the
zigzag boundaries.

D. Edge states and perfectly reflecting states

As in monolayer and bilayer graphene, there exists an
edge state at �=0 with amplitude only in the bilayer region
localized at the boundary for zigzag boundaries �ZZ1 and
ZZ2� and no edge state for armchair boundaries as is shown
in Table I. The details on the derivation are discussed in
Appendix C. These edge states do not play important roles in
the transmission through the boundaries because the trans-
mission is possible only away from �=0. In Appendix C,
further, we show that at ���=�1 we have perfect reflection in
the region ky �0 at the K point and ky 0 at the K� point
only for boundary ZZ1. These states are also included in
Table I. This special feature of ZZ1 clearly appears in nu-
merical results presented in Sec. V.

IV. VALLEY POLARIZATION

We consider electron transmission between a monolayer
and bilayer graphene with same electron concentration. This
is realized when the electron density is changed by a gate
voltage. In the presence of electric field due to gate, the
symmetry between the top and bottom layers of a bilayer
graphene is broken and a small band gap can open.21,71–73

This small gap will be completely neglected in the following
because we are interested in the essential feature of the trans-
mission property. Besides, the Fermi level always lies away
from the gap and the asymmetry can be controlled by the

TABLE I. The number of �=0 edge states present in the bilayer
graphene localized at the boundaries of monolayer and bilayer
graphene. The carbon sites where the wave function has nonzero
amplitude are shown in the rightmost column. The number in pa-
renthesis denotes that of perfectly reflecting states present at ���
=�1.

K K�

Amplitudeky 0 ky �0 ky 0 ky �0

ZZ1 0 1 �1� 1 �1� 0 A1, a2

ZZ2 1 0 0 1 B2

AC1/AC2 0 0
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field due to an extra gate. The electron density higher than
�k /�1�2 can experimentally be achieved by various
methods.74,75

Electron wave with wave vector k and positive group ve-
locity in the x direction at Fermi energy �F is injected from
the K valley in the monolayer side at the Fermi level. For
incident angle � �−� /2���� /2�, we have kx=sk cos � and
ky =sk sin � with k= �k� for the incident wave. The wave is
reflected in the direction �−�.

When �k /�1��2, only a single conduction band is occu-
pied in the bilayer. In this case, the wave transmitted into the
bilayer has the same wave vector k, i.e., there is no refrac-
tion. When �k /�1�2, two bands are occupied by electrons
in the bilayer, giving rise to two Fermi circles. In this case,
the number of transmitted waves changes from two to one
with the increase in � and the total reflection occurs for suf-
ficiently large �. This is illustrated in Fig. 2.

In the energy region close to the Dirac point �k /�1→0, a
simple expression can be obtained for the amplitude f of the
transmitted wave for incident wave given by Eq. �7�. The
details on the derivation are discussed in Appendix A. The
result is

f  f0 �
2s cos �

− e−2i� − �sin � − s�1 + sin2 ��2
. �33�

Because the velocity is � /� in the monolayer and 2�2k /�1�
in the bilayer, the transmission probability is proportional to
k�f �2. Therefore, it vanishes for k=0 in agreement with rKK
=−1 as discussed in the previous section and increases in
proportion to k. Further, it takes a maximum at �=s�0 with

�0 = sin−1 1
�3

 0.196� . �34�

For the K� point the amplitude is obtained by replacing �
with −�. The valley polarization62 of the transmitted wave
becomes

P =
TK − TK�

TK + TK�
= s

2 sin ��1 + sin2 �

1 + 2 sin2 �
, �35�

where TK and TK� are transmission probability into K and K�
valley, respectively. The valley polarization increases with
incident angle �, up to P= 
2�2 /3 
0.94 at �= 
� /2.

For a ZZ2 boundary, from the first equation of Eq. �28�,
the amplitude is calculated as

f =
2s cos �

− e−2i� + ie−i��sin � − s�1 + sin2 ��
. �36�

We have

f = �2f0ei��+��, � = − s tan−1
�1 + sin2 �

cos �
, �37�

where f0 is defined in Eq. �33� for ZZ1 boundary. Therefore,
a maximum transmission also occurs at �=s�0 for the K
point and −s�0 for the K� point. For armchair boundaries, the
analytic expression of the amplitude is presented in Appen-
dix B. It shows that the intervalley transmission probability
between K and K� is 1/5 of the intravalley transmission for
perpendicularly incident wave ��=0� near the Dirac point
and that maximum transmission occurs at �s�0.179� for
the K point and �−s�0.179� for the K� point.

The valley polarization completely disappears when two
traveling waves are involved in the transmission in the bi-
layer, i.e., for small incident angles in the case �k /�1�2.
In this case the wave functions for −ky are simply obtained
by taking complex conjugate of those for ky in both mono-
layer and bilayer graphene and therefore the reflection and
transmission coefficients for −� are related to those for +�
through complex conjugate. Consequently, the transmission
and reflection probabilities become symmetric about �=0, as
will be demonstrated in the next section. Asymmetry reap-
pears at large incident angle for which transmission into a
single traveling wave is allowed.

V. NUMERICAL RESULTS

Figure 3 shows some examples of calculated transmission
probability as a function of incident angle for �a� zigzag
boundary ZZ1 with �=−� /6, �b� zigzag ZZ2 with �=
+� /6, and �c� armchair �AC1 and AC2� with �=0 and
+� /3. The electron density is specified by k corresponding to
the Fermi energy in the monolayer and the results in the
low-density regime �k /�1��2 are shown. The transmission
probability varies strongly as a function of the incident angle
and its maximum appears at an angle deviating from the
vertical direction. This asymmetry is opposite between the K
and K� points, showing that strong valley polarization can be
induced across the interface of monolayer and bilayer
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FIG. 2. Some examples of the alignment of energy bands and
corresponding Fermi circles in monolayer and bilayer graphene un-
der the condition of equal electron concentration.
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graphene. Except in the high-concentration region �k /�1
��2, the valley polarization is similar for different bound-
aries.

Figure 4 shows the total transmission probability in the
high-density region �k /�1��2. The transmission probability
depends strongly on boundaries. In fact, at the bottom of the
first excited conduction band, i.e., k� /�1=�2, it completely
vanishes in the region ��0 for ZZ1, but not for ZZ2 and
armchair boundaries. This vanishing transmission at �=�1
for boundary ZZ1 is closely related to the presence of a
perfectly reflecting state in the region ky �0 and ky 0 for
the K and K� point, respectively, as discussed in Sec. III D
and Appendix C.

This can also be understood directly from the behavior of
the evanescent mode given by Eq. �14� and the boundary
condition. At �����1, the amplitude of the evanescent mode
is nonzero at a2 sites and vanishes at B2 sites, and thus it
cannot contribute to boundary condition of ZZ1, FB2�0,y�
=0. As a result, the condition should be satisfied by the trav-
eling mode alone, leading to the vanishing amplitude of the
transmitted wave. For ZZ2, on the other hand, the condition
Fa2�0,y�=0 is easily satisfied even for nonzero amplitude of
the traveling mode because of the evanescent mode, leading
to appreciable transmission.

When �k /�1�2, the first excited conduction band
crosses the Fermi energy and thus the second traveling mode

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

Angle (units of π/2)

T
ra

ns
m

is
si

on
P

ro
ba

bi
lit

y

1.0
0.5
0.2
0.1

kγ/γ1

(a) Zigzag-1, η=-π/6

-1.0 -0.5 0.0 0.5 1.0

Angle (units of π/2)

1.0
0.5
0.2
0.1

kγ/γ1

(b) Zigzag-2, η=+π/6

-1.0 -0.5 0.0 0.5 1.0

Angle (units of π/2)

1.0
0.5
0.2
0.1

kγ/γ1

(c) Armchair, η=0, +π/3

FIG. 3. �Color online� Calculated transmission probabilities of the K valley as a function of incident angle � for several charge densities
specified by k in the monolayer graphene. �a� A zigzag boundary �ZZ1� with �=−� /6. �b� A zigzag boundary �ZZ2� with �=+� /6. �c� An
armchair boundary �AC1 and AC2� with �=0 and +� /3. The vertical dot-dot-dashed line shows the maximum angle in the limit k→0.
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FIG. 4. �Color online� Calculated transmission probabilities for �k /�1��2, corresponding to Fig. 3. Fermi lines in monolayer and
bilayer graphene are depicted in the inset. Two transmitted waves are present in the bilayer in the region between two upward arrows and
no transmission is allowed outside the region denoted by downward arrows.
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opens for small incident angles between upward arrows. In
this case, the transmission probability is symmetric about �
=0, causing no valley polarization, as has been discussed in
the previous section. For large incident angles �outside the
downward arrows�, there is no traveling mode in the bilayer
graphene and therefore the transmission probability vanishes.

Figure 5 shows transmission and reflection probabilities
through the armchair boundary. Intervalley transmission and
reflection probabilities are much smaller than the intravalley
probabilities when the electron density is sufficiently small
but slowly increase with energy and become comparable to
intravalley probabilities when the Fermi level reaches the
bottom of the first excited conduction band.

Figure 6 shows some examples of the wave function as a
function of position for a zigzag boundary ZZ1 with
�=−� /6. The energy is chosen to be sufficiently small, the

incident angle �=0. We note that F̃B�0� in the monolayer
graphene becomes vanishingly small and consequently

F̃A�0�2 in agreement with the discussion in Sec. IV. Fur-
ther, the boundary conditions, Eq. �22�, are satisfied by the
presence of considerable amplitude of the evanescent mode.
In fact, the spatially varying amplitude in the region x0
mostly consists of the evanescent mode.

VI. DISCUSSION AND CONCLUSION

Explicit numerical calculations have been performed
within the model of uniform charge density on both mono-
layer and bilayer regions. In this model, the energy measured
from the Dirac point can be slightly different between the
layers when the electron density becomes nonzero �see Fig.
2�. In actual systems, this may be realized by the presence of
small potential variation in the vicinity of the boundary,
which should be determined in a self-consistent manner. The
essential features of the results that envelope functions are

well connected at the boundary and that strong valley polar-
ization occurs due to the boundary transmission are expected
to be independent of the presence of such small perturba-
tions.

We can also consider the case that the kinetic energy of
the incident and transmitted waves is the same between two
regions. This is realized, for example, when a hot electron
above the Fermi sea is injected. The transmission is under-
stood in the same manner, but there appears some significant
difference because of the difference in the wave vector of the
monolayer and bilayer, in particular, when the Fermi level
lies in the vicinity of the Dirac point. For a given wave
vector k in the monolayer, for example, the wave vector be-
comes k�=��1k /��k in the bilayer. Because the wave-
vector component ky parallel to the boundary is conserved,
this leads to the focusing of the transmitted wave into the
vertical direction, i.e., �����arcsin�� /�1�1/4, where �� is the
angle of the transmitted wave. Further, we have �xk��ky,
showing that ky can be neglected in Eqs. �24� and �28�. Then,
the transmission is nearly independent of the incident angle
and the valley polarization is considerably reduced.

The valley polarization of waves transmitted through a
single boundary is reduced when waves go through a ribbon-
shaped narrow bilayer region sandwiched by monolayer
graphenes, as shown in Fig. 7�a�. The reason lies in the can-
cellation at two parallel boundaries. The time-reversal sym-
metry gives the relation that the transmission probability in-
cident from the monolayer at the K point with angle � is the
same as that incident from the bilayer at the K� point in the
reverse direction, i.e., �tKK

BM����2= �tK�K�
MB ����2, where “BM” and

“MB” stand for waves transmitted from monolayer to bilayer
and from bilayer to monolayer, respectively. Let us consider
a hypothetical ribbon consisting only of ZZ1 boundary. With
the use of the symmetry �tKK

MB����2= �tK�K�
MB �−���2, the total

transmission probability through the bilayer ribbon is propor-
tional to �tKK

MB����2� �tKK
BM����2= �tKK

BM�−���2� �tKK
BM����2, when
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interference effects are neglected. The result is independent
of K and K� points.

Actually, zigzag bilayer ribbons always consist of a pair
of ZZ1 and ZZ2 boundaries as shown in Fig. 7�a�, giving
different amount of valley polarization. Therefore, the can-
cellation is not complete and certain amount of valley polar-
ization remains after transmission through a ribbon except in
the vicinity of the Dirac point �����1, where the transmis-
sion probabilities across ZZ1 and ZZ2 are different only by
factor 2, leading to the complete cancellation. This cancella-
tion is reduced for two boundaries not parallel to each other
and the polarization can be enhanced, for example, when
waves go through a triangular-shape bilayer island formed in
a monolayer graphene as shown in Fig. 7�b�.

Boundary conditions for edges of monolayer graphene
with more general forms were discussed previously and
boundaries were shown to be classified into either armchair
or zigzag types.67 Similar considerations are likely to be pos-
sible in the present system. For interfaces other than zigzag
and armchair, however, the full boundary conditions require
the presence of evanescent modes which are not described by
states in the vicinity of the K and K� points given by Eqs. �3�
and �8�.67–70 This problem is left for a future study.

In conclusion, boundary conditions between monolayer
and bilayer graphene have been obtained within an effective-
mass scheme based on a tight-binding model. Evanescent
mode decaying exponentially away from the boundary plays
an important role and as a result the traveling modes are
strongly connected to each other between the monolayer and
bilayer graphene. The transmission probability can be quite
different between K and K� states for waves incident in ob-
lique directions, resulting in significant valley polarization of
waves transmitted through the boundary.
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APPENDIX A: LOW-ENERGY APPROXIMATION

In order to understand boundary properties, the boundary
condition �22� is examined in the low-energy approximation

�����1. The envelope function in bilayer graphene consists

of traveling wave F̃K and evanescent wave GK. Then, Eq.
�22� becomes

FA
K = F̃A1

K + �GA1
K ,

FB
K = F̃b1

K + �Gb1
K ,

0 = F̃B2
K + �GB2

K �A1�

with coefficient �. In the low-energy regime, F̃b1
K can be

replaced by F̃B2
K with the use of Eq. �17� and the evanescent

wave, Eq. �14�, is approximated by

�
GA1

K

Gb1
K

Ga2
K

GB2
K
	 =�

s
�x − ky

�x + ky

− i
���x − ky�

�1

− is
���x − ky�

�1

1

	 . �A2�

Eliminating � in Eq. �A1�, we immediately have Eq. �23�.
The envelope function in the monolayer side consists of

incident wave in the direction � and reflected wave in the
direction �−�, i.e.,

�FA
K�x�

FB
K�x�

� = �e−i�

1
�eikxx + rKK�− ei�

1
�e−ikxx �A3�

with reflection coefficient rKK, where we use kx=sk cos � and
ky =sk sin � in Eq. �7�. Under the condition of equal electron
density in the monolayer and bilayer regions, the transmitted
wave is written as

�F̃A1
K �x�

F̃B2
K �x�

� = f�− se−2i�

1 �eikxx �A4�

with amplitude f .
Upon substitution of Eqs. �A3� and �A4� in Eq. �23�, and

�x  �����1/�2 + ky
2  k�1 + sin2 � , �A5�

we have

f = 2 cos ��− se−2i� − s
�x − ky

�x + ky
�−1

, �A6�

rKK = − 1 −
�k

�1
�s cos � − i�1 + sin2 ��f . �A7�

The transmission probability is given by �tKK�2
=2��k /�1��f �2. This satisfy the unitarity condition �tKK�2
+ �rKK�2=1 up to the lowest order in �k /�1.

APPENDIX B: ARMCHAIR BOUNDARY

An armchair boundary AC1, for example, shall be dis-
cussed in the vicinity of the Dirac point �����1. After elimi-
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FIG. 7. Schematic illustration of ribbon and prism shaped region
of bilayer graphene with zigzag boundary. In a ribbon-shaped bi-
layer with zigzag structure, boundaries always consist of a pair of
ZZ1 and ZZ2, but in the case of equilateral triangles, all boundaries
consist of either ZZ1 or ZZ2.
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nation of evanescent modes of the K and K� points, bound-
ary condition for traveling modes becomes

�FA�0�
FB�0� � ���AA �AB

�BA �BB
��F̃A1�x�

F̃B2�x�
��

x=0

�B1�

with

�AA =�1 +
�x − ky

�x + ky

ik̂x − ky

2�x
−

�x − ky

�x + ky

ik̂x + ky

2�x

−
�x + ky

�x − ky

ik̂x − ky

2�x
1 +

�x + ky

�x − ky

ik̂x + ky

2�x

	 ,

�AB = −
s

2�
�x − ky

�x

�x − ky

�x

�x + ky

�x

�x + ky

�x

	 ,

�BA =
s�

2�1�
�x − ky

�x
�k̂x + iky� −

�x − ky

�x
�k̂x − iky�

−
�x + ky

�x
�k̂x + iky�

�x + ky

�x
�k̂x − iky� 	 ,

�BB = −
�

�1
�k̂x − iky 0

0 k̂x + iky

� +
i

2

�

�1

�x
2 − ky

2

�x
�1 1

1 1� ,

�B2�

and

FA�x� = � FA
K�x�

FA
K��x�

�, etc. �B3�

In the limit ��� /�1→0, they are reduced to

FA�0�  �AAF̃A1�x��x=0 + �ABF̃B2�x��x=0,

FB�0�  0. �B4�

This shows that rKK=−1 and rK�K=0 for electron wave
incident from the K valley at k=0, the same as for zigzag
boundaries. With the increase in k, the transmission increases
in proportion to k and its amplitude can be estimated using
the first equation of Eq. �B4�. Because of the presence of
off-diagonal elements in �AA and �AB, intervalley mixing oc-
curs at the armchair boundary in proportion to k. After some
manipulations, the amplitude f transmitted into K valley and
f� into the K� valley become

f = −
s

4
e2i� cos ��5 − e2i� − 2isei��1 + sin2 �� ,

f� =
1

2
f0ei�−2�+��,

� = s tan−1cos ��1 + sin2 �

sin2 �
. �B5�

For the K point, the transmission probability is proportional
to k�f �2 which takes maximum at �0.174�, and for the K�
point k�f��2 which takes maximum at �0. Analysis of the
above equations reveals that intervalley mixing is 1/5 of the
transmission probability within valley for perpendicularly in-
cident wave ��=0�. The total probability is given by the sum
of them and maximum transmission occurs at �0.179�.

APPENDIX C: EDGE STATES

As in edges of monolayer graphene,35,36 there can be edge
states localized along a boundary between the monolayer and
bilayer graphene. An edge state consists of evanescent modes
exponentially decaying in the negative x direction in the
monolayer and those decaying in the positive x direction in
the bilayer. In the following, we shall confine ourselves to
the case of vanishing electron density in both monolayer and
bilayer regions.

In monolayer graphene occupying half space x�0, a rel-
evant evanescent mode with energy � and ky in the range
��ky� ��� has imaginary wave vector i�, with

�� = − ���ky�2 − �2, �C1�

and the wave function G−
Ke−�x+ikyy for the K point, with

G−
K = �GA

K

GB
K � ��+ s�sy��� − ky

2ky
�

i��� + ky

2ky
� 	 , �C2�

where s� and sy denote the sign of � and ky, respectively. The
wave function for the K� point is obtained by replacing ky
with −ky.

In bilayer graphene lying in the region x0, we can have
two evanescent modes with wave vector,

�� j = + ���ky�2 − �2 + sj����1, �C3�

sj = �− 1 �j = 1� ,

+ 1 �j = 2�� �C4�

and wave function G+j
K e−�jx+ikyy, with
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G+j
K =�

GA1
Kj

GB1
Kj

GA2
Kj

GB2
Kj
	 �

1

2�
−

sjs���� j − ky�

���ky�2 +
1

2
sj����1

i
sj���

���ky�2 +
1

2
sj����1

− i
�

���ky�2 +
1

2
sj����1

��� j + ky�

���ky�2 +
1

2
sj����1

	 .

�C5�

These evanescent modes exist in the region ��ky�
��2−sj����1. Therefore, there are no traveling modes in
both monolayer and bilayer graphene in the region,

��ky�  ��2 + ����1. �C6�

Note that G+2
K is the same as Eq. �14�.

Edge states localized near the boundary �x=0� have the
wave function,

G�r� = � �
v=K,K�

�vG−
ve−�x+ikyy

�x � 0� ,

�
v=K,K�

�
j=1,2

�vjG+j
v e−�jx+ikyy

�x  0�� �C7�

with appropriate coefficients �v and �vj. More explicitly, for
boundary ZZ1, we have

�GA1
v1 GA1

v2 GA
v

iGB1
v1 iGB1

v2 iGB
v

GB2
v1 GB2

v2 0
	� �v1

�v2

− �v
	 = 0, �C8�

where we have multiplied imaginary unit i in such a way that
the coefficient matrix becomes real. For boundary ZZ2, we
have

�GA1
v1 GA1

v2 GA
v

iGB1
v1 iGB1

v2 iGB
v

iGA2
v1 iGA2

v2 0
	� �v1

�v2

− �v
	 = 0. �C9�

For AC1, we have

�
GA1

K1 GA1
K2 GA

K 0 0 0

iGB1
K1 iGB1

K2 iGB
K 0 0 0

GB2
K1 GB2

K2 0 GB2
K�1 GB2

K�2 0

0 0 0 GA1
K�1 GA1

K�2 GA
K�

0 0 0 iGB1
K�1 iGB1

K�2 iGB
K�

− iGA2
K1 − iGA2

K2 0 iGA2
K�1 iGA2

K�2 0

	�
�K1

�K2

− �K

�K�1

�K�2

− �K�

	
= 0. �C10�

The determinant of the coefficient matrix remains nonzero in

the energy range satisfying Eq. �C6� and vanishes at �=0.
Therefore, edge states can be present only at �=0.

Let us consider the special case �=+0 or �=−0. In the
monolayer region, we have �=−ky for ky 0, �=ky for ky
�0, and therefore the evanescent mode becomes

G−
K = ��

1

0
� �ky  0� ,

�0

i
� �ky � 0� ,� �C11�

where we have multiplied an appropriate phase factor. The
wave function for the K� point is obtained by replacing ky
with −ky.

In the bilayer region, on the other hand, we have � j = �ky�
for both j=1 and 2, and consequently G+j

K becomes the same
between j=1 and 2. In order to obtain two independent eva-
nescent modes we expand G+j

K �x��G+j
K e−�jx in terms of �

= ����1 / ��ky�2,

G j+
K �x� = G j+

K �x��0� + �G j+
K �x��1� + O��2� �C12�

with

G+j
K �x��0� =�

− sjs�

1 − sy

2

0

0

1 + sy

2

	e−�ky�x �C13�

and

G+j
K �x��1� = −

1

4
sj�

− sjs�

1 − sy

2

0

0

1 + sy

2

	�1 + 2�ky�x�e−�ky�x

−
1

2
sj�

sjs�

2

− i
��ky�
�1

isjs�

��ky�
�1

−
1

2

	e−�ky�x. �C14�

Then, two independent modes can be written as G1
K�x� and

G2
K�x� with G1

K�x�=G+1
K �x��0� and

G2
K�x� = � �

j=1,2
sjG+j

K �x��1�
�ky  0� ,

�
j=1,2

G+j
K �x��1�

�ky � 0� .� �C15�

Therefore, we have for ky 0,
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G1
K�x� =�

0

0

0

1
	e−�ky�x, �C16�

G2
K�x� =�

0

i
��ky�
�1

0

1

2
− �ky�x

	e−�ky�x, �C17�

and for ky �0,

G1
K�x� =�

1

0

0

0
	e−�ky�x, �C18�

G2
K�x� =�

1

2
− �ky�x

0

i
��ky�
�1

0

	e−�ky�x. �C19�

The wave functions for the K� point are again obtained by

replacing ky with −ky, i.e., G j
K��x ;ky�=G j

K�x ;−ky�.
Therefore, we have for ky 0,

ZZ1:� K: �K = �K1 = �K2 = 0,

K�: �K� = 0, �K�1 +
1

2
�K�2 = 0,� �C20�

ZZ2:� K: �K = �K2 = 0,

K�: �K� = �K�1 = �K�2 = 0,� �C21�

AC1:� �K = �K1 = �K2 = 0,

�K� = �K�1 = �K�2 = 0,� �C22�

and for ky �0

ZZ1:� K: �K = 0, �K1 +
1

2
�K2 = 0,

K�: �K� = �K�1 = �K�2 = 0,
� �C23�

ZZ2:� K: �K = �K1 = �K2 = 0,

K�: �K� = �K�2 = 0, � �C24�

AC1:� �K = �K1 = �K2 = 0,

�K� = �K�1 = �K�2 = 0.� �C25�

There is no edge state in the armchair boundary.
In the case of boundary ZZ1, we have a single edge state

at the K� point for ky 0 and one at the K point for ky �0.
The wave function of these states is completely localized in
the bilayer region and is given by

GK�x� =�
�ky�x

0

− i
��ky�
�1

0
	e−�ky�x �ky � 0� . �C26�

The wave function for the K� point �ky 0� is also given by
the above equation.

In the case of boundary ZZ2, on the other hand, we have
a single edge state at the K point for ky 0 and one at the K�
point for ky �0. The wave function is completely localized in
the bilayer region and is given by

GK�x� =�
0

0

0

1
	e−�ky�x �ky  0� . �C27�

The wave function for the K� point �ky �0� is again given by
the same expression. These results are summarized in Table
I.

For j=2 and at ���=�1, we have �2= �ky�, giving GB2
K2=0

for ky �0 and GB2
K�2=0 for ky 0 in Eq. �C5�. Other elements

of G j
K and G j

K� all remain nonzero. For the boundary ZZ1,
therefore, the boundary condition FB2�0,y�=0 is satisfied
and traveling modes in the monolayer can be connected only
to the evanescent mode. It is easy to show that this evanes-
cent mode cannot be connected to the evanescent mode in
the monolayer and therefore cannot form a pure edge state.
However, we have perfect reflection at ���=�1 for −�1
��ky �0 at the K point and for 0��ky ��1 at the K� point.

This perfect reflection is closely related to the vanishing
transmission probability at �=�1 for ZZ1 shown in Fig. 4. In
fact, when the Fermi level lies at �1 under the condition that
the electron density is the same between the monolayer and
bilayer graphene, i.e., k=�2�1 /�, the reflection coefficient
for wave incident from the monolayer side is calculated as

rKK =
cos � − i�1 − 2�2�sin �

cos � + i�1 − 2�2�sin �
��  0� . �C28�
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